Thermophysical Properties of Polycrystalline PbS, PbSe, and PbTe in the Temperature Range 300-700 K

A. A. El-Sharkawy,¹ A. M. Abou El-Azm,¹ M. I. Kenawy,² A. S. Hillal,² and H. M. Abu-Basha²

Received July 15, 1983

Thermal properties (thermal conductivity λ , thermal diffusivity a , and specific heat capacity c_p of polycrystalline PbS, PbSe, and PbTe were measured in the temperature range 300-700 K. The electrical conductivity was also measured for the three substances. Lattice, electronic and bipolar components of thermal conductivity are much larger than the electronic part. The specific heat capacity is observed to increase slightly with temperature.

KEY WORDS: electrical conductivity; heat capacity; lead chalcogenides; thermal conductivity; thermal diffusivity.

1. INTRODUCTION

In recent years, a great amount of work has been done in measuring the thermal and electrical properties of the semiconducting lead chalcogenides [1-6]. However, only a limited amount of measurements are reported in the literature at temperatures above 300 K. Devyatkova and Smirnov [2] measured the thermal conductivity of a series of PbTe samples at temperatures between 80 and 450 K, and Rasulov and Medzhidov [6] measured the heat capacity of PbSe in the temperature range 300–1480 K. The present work is concerned with thermal conductivity, thermal diffusivity, specific heat capacity, and electrical conductivity of polycrystalline PbS, PbSe, and PbTe samples. The mechanism of heat transfer by phonons, electrons, bipolars, and photons is investigated. However, previous measurements of thermal conductivity showed no indication of bipolar thermal conductivity.

¹ Physics Department, Al-Azhar University, Nasr City, Cairo, Egypt.

²Physics Department, Ain-Shams University, Cairo, Egypt.

Fedorov and Machuev [1] pointed out the dependence of thermal conductivity of PbTe on temperature.

2. EXPERIMENTAL PROCEDURE

PBS, PbSe, and PbTe samples were prepared by melting stoichiometric amounts of pure components in evacuated quartz ampules. The phase homogeneity of polycrystalline samples obtained was determined by X-ray structural analysis. Discs of 0.01 m diameter and 2×10^{-3} m thickness were pressed under a pressure of 15 tons \cdot cm⁻². The calculated densities were 7550 kg \cdot m⁻³ for PbS, 8050 kg \cdot m⁻³ for PbSe, and 8100 kg \cdot m⁻³ for PbTe. For the simultaneous determination of thermal properties (c_n, a, λ) , a plane temperature waves method was used [7, 8]. The experimental errors of these properties did not exceed 3.5% for specific heat capacity and thermal conductivity, and 3-6% for thermal diffusivity measurements.

3. RESULTS AND DISCUSSION

Figure 1 shows the variation of total thermal conductivity λ , of polycrystalline PbS, PbSe, and PbTe samples with temperature. It was

Fig. 1. Variation of the total thermal conductivity λ , of polycrystalline PbS, PbSe, and PbTe with temperature.

Thermophysical Properties of PbS, PbSe, and PbTe 263

found that thermal conductivity decreases as the temperature increases. The total thermal conductivity of lead chalcogenides represents the transport of heat by phonons, λ_1 , free electrons, λ_e , and diffusion of electronhole pairs (bipolars), λ_{bi} . The value of λ_e can be calculated using the **Wiedemann-Franz law:**

$$
\lambda_{\rm e} = L_0 \sigma T
$$

where L_0 is the Lorenz number, and σ is the electrical conductivity. Devyatkova and Smirnov [2] showed that the calculation of λ_e is complicated due to the fact that the exact value of L_0 is not always known, but at **high temperatures when degeneracy is absent while high energy electrons**

Fig. 2. Variation of the electrical conductivity of PbS, PbSe, and PbTe with temperature.

are present, the theoretical value of the Lorenz number $(L_0 = (\pi^2/3)(k/e)^2)$, where k is the Boltzmann contant) can be used. Also, Muzhdaba and Shaylt [9] showed that the Lorenz number is constant at high temperatures, i.e., scattering is elastic throughout the investigated temperature range.

The measured experimental values of the electrical conductivity σ of the investigated materials are shown in Fig. 2. Electrical conductivity decreases as temperature increases, displaying a metallike impurity conduction in the investigated temperature range (300–700 K). The behavior of σ in terms of T shows that the energy required to excite the charge carriers from the impurity level is very small. The relation between $\log \sigma$ and $1/T$ is nearly linear. This means that conduction is in the intrinsic region where the carrier concentration is constant. At high temperatures, the lattice scattering becomes predominant, and resistivity tends to increase with temperature. This shows a partially metallic behavior of PbS, PbSe, and PbTe polycrystalline samples.

Table I shows the calculated value of the activation energy E_g of the three samples under consideration. The estimated value of λ_e is shown in Tables II, III, and IV for PbS, PbSe, and PbTe, respectively. The bipolar part of the thermal conductivity λ_{hi} was calculated using the following equation [10]:

$$
\lambda_{\text{bi}} = \frac{3}{4} \frac{L_0 \sigma T}{\pi^2} \left(\frac{E_g}{kT} + 4 \right)^2
$$

The estimated values of λ_{bi} as a function of temperature for the investigated samples are also shown in Tables II, III, and IV. From the tables, it may be noted that λ_{bi} plays a greater role than the electronic part in the temperature range investigated. The lattice thermal conductivity λ_1 was determined from

$$
\lambda_1 = \lambda_t - \lambda_e - \lambda_{bi}
$$

It was found the λ_1 decreases with temperature. The mechanism of heat transfer by photons was calculated for the three substances using the data

Substance	E_{g} (eV)
Pbs	0.194
PbSe ٠	0.296
PbTe	0.316

Table I. Activation Energy of PbS, PbSe, and PbTe

Table II. Electrical and Thermal Properties of PbS **Table 1I. Electrical and Thermal Properties of PbS**

Thermophysical Properties of PbS, PbS

265

Table III. Electrical and Thermal Properties of PbSe Table IlL Electrical and Thermal Properties of PbSe

266

ophysical Properties of PbS, PbSe, and

267

Fig. 3. Variation of the specific heat capacity of PbS, PbSe, and PbTe with temperature.

reported for the absorption coefficient [11] and data reported for the refractive index [12].

The calculated value of thermal conductivity due to photons at 300 K is equal to 4×10^{-5} , 4.5×10^{-5} , and 6×10^{-5} W · m⁻¹ · K⁻¹ for PbS, PbSe, and PbTe, respectively. The radiative part of the thermal conductivity is quite negligible. The mechanism of heat transfer can be summarized as follows. For PbS, it is 98.6% phonons, 1.2% bipolars, and 0.12% electrons. For PbSe, it is 92.8% phonons, 6.5% bipolars, and 0.36% electrons. For PbTe, it is 92.8% phonons, 6.8% bipolars, and 0.34% electrons at 300 K.

Thermal diffusivity data are listed in Tables II, III, and IV. Figure 3 shows the variation of c_p with temperature for PbS, PbSe, and PbTe. The specific heat capacity increases slightly with temperature. It is possible that anharmonicity and increase in conduction electrons and electronic heat capacity are responsible for the increase in c_p .

REFERENCES

- 1. V.I. Fedorov and V. I. Machuev, *Soy. Phys. Solid State* 11:1116 (1969).
- 2. E. D, Devyatkova and I. A. Smirnov, *Soy. Phys. Solid State* 2:1786 (1960).
- 3. M. Schlter et al., *Phys. Rev. B* 12:650 (1975).
- 4. M.M. Ravindara, S. Auluck, and V. K. Srivastava, *Phys. Stat. Sol. (a)* 52:K151 (1979).
- 5. N.M. Ravindra and V. K. Stivastava, *Phys. Stat Sol. (a)* 58:311 (1980).

Thermophysical Properties of PbS, PbSe, and PbTe 269

- 6. S.M. Rasulov and R. A. Medzhidov, *Teplo-Fizika Vysokikh, Temperature* 16:304 (1978).
- 7. S.R. Atalla and A. A. E1-Sharkawy, V Eur. Conf. Therrnophysical Properties of Solids at High Temperature, Abstracts, Moscow (1976).
- 8. R. Basili, A. A. El-Sharkawy, and S. R. Atalla, *Rev. Int. Hautes Temp. Réfract.* 16:331 (1979).
- 9. V.M. Muzhdaba and S. S. Shaylt, *Soy. Phys. Solid State* 8:2997 (1967).
- 10. A.R. Regal, I. A. Smirnov, and S. Shadrichev, J. *Non-cryst. Solids* 8:266 (1972).
- 11. R.B. Schoolar and J. R. Dixon, *Phys. Rev.* 137:A667 (1965).
- 12. A.K. Walton and T. S. Moss, *Proc. Phys. Soc.* 81:509 (1963).